翻訳と辞書
Words near each other
・ Rank (differential topology)
・ Rank (film)
・ Rank (formation)
・ Rank (graph theory)
・ Rank (J programming language)
・ Rank (linear algebra)
・ Rank (surname)
・ Rank 1
・ Rank 3 permutation group
・ Rank abundance curve
・ Rank and file
・ Rank and File (band)
・ Rank and insignia of the Tanzanian Armed Forces
・ Rank condition
・ Rank correlation
Rank error-correcting code
・ Rank factorization
・ Rank Hovis McDougall
・ Rank in Judo
・ Rank Insignia of the Army of the Guardians of the Islamic Revolution
・ Rank insignia of the Austro-Hungarian armed forces
・ Rank insignia of the Carabinieri
・ Rank insignia of the German Bundeswehr
・ Rank insignia of the Guardia di Finanza
・ Rank insignia of the Iranian military
・ Rank mobility index
・ Rank of a group
・ Rank of a partition
・ Rank of an abelian group
・ Rank Organisation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Rank error-correcting code : ウィキペディア英語版
Rank error-correcting code

In coding theory, rank codes (also called Gabidulin codes) are non-binary〔Codes for which each input symbol is from a set of size greater than 2.〕 linear error-correcting codes over not Hamming but ''rank'' metric. They described a systematic way of building codes that could detect and correct multiple random ''rank'' errors. By adding redundancy with coding ''k''-symbol word to a ''n''-symbol word, a rank code can correct any errors of rank up to ''t'' = ⌊ (''d'' − 1) / 2 ⌋, where ''d'' is a code distance. As an erasure code, it can correct up to ''d'' − 1 known erasures.
A rank code is an algebraic linear code over the finite field GF(q^N) similar to Reed–Solomon code.
The rank of the vector over GF(q^N) is the maximum number of linearly independent components over GF(q). The rank distance between two vectors over GF(q^N) is the rank of the difference of these vectors.
The rank code corrects all errors with rank of the error vector not greater than ''t''.
== Rank metric ==
Let X^n — ''n''-dimensional vector space over the finite field GF\left( \right), where q is a power of a prime, N is an integer and \left(u_1, u_2, \dots, u_N\right) with u_i \in GF(q) is a base of the vector space over the field GF\left( \right).
Every element x_i \in GF\left( \right) can be represented as x_i = a_u_1 + a_u_2 + \dots + a_u_N. Hence, every vector \vec x = \left( \right) over GF\left( \right) can be written as matrix:
:
\vec x = \left\| c}
a_ & a_ & \ldots & a_ \\
a_ & a_ & \ldots & a_ \\
\ldots & \ldots & \ldots & \ldots \\
a_ & a_ & \ldots & a_
\end} \right\|

''Rank of the vector'' \vec x over the field GF\left( \right) is a rank of the corresponding matrix A\left( \right) over the field GF\left( \right) denoted by r\left( \right).
The set of all vectors \vec x is a space X^n = A_N^n. The map \vec x \to r\left( \vec x; q \right)) defines a norm over X^n and a ''rank metric'':
:
d\left( \right) = r\left( \right)


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Rank error-correcting code」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.